Механизмы развития нормальной науки по Томасу Куну

0
Фрагмент нашел исследователь Владимир Куценко10/14/2024

Я думаю, что обычно бывает только три центральных момента в научном исследовании некоторой области фактов; их невозможно резко отделить друг от друга, а иногда они вообще неразрывны. 

Прежде всего имеется класс фактов, которые, как об этом свидетельствует парадигма, особенно показательны для вскрытия сути вещей. Используя эти факты для решения проблем, парадигма порождает тенденцию к их уточнению и к их распознаванию во все более широком круге ситуаций. В различные периоды такого рода значительные фактические уточнения заключались в следующем: в астрономии — в определении положения звезд и звездных величин, периодов затмения двойных звезд и планет; в физике — в вычислении удельных весов и сжимаемостей материалов, длин волн и спектральных интенсивностей, электропроводностей и контактных потенциалов; в химии — в определении состава веществ и атомных весов, в установлении точек кипения и кислотностей растворов, в построении структурных формул и измерении оптической активности. Попытки увеличить точность и расширить круг известных фактов, подобных тем, которые были названы, занимают значительную часть литературы, посвященной экспериментам и наблюдениям в науке. Неоднократно для этих целей создавалась сложная специальная аппаратура, а изобретение, конструирование и сооружение этой аппаратуры требовали выдающихся талантов, много времени и значительных финансовых затрат. Синхротроны и радиотелескопы представляют собой лишь самые новые примеры размаха, с которым продвигается вперед работа исследователей, если парадигма гарантирует им значительность фактов, поисками которых они заняты. От Тихо Браге до Э.О. Лоренца некоторые ученые завоевали себе репутацию великих не за новизну своих открытий, а за точность, надежность и широту методов, разработанных ими для уточнения ранее известных категорий фактов.

Второй, обычный, но более ограниченный класс фактических определений относится к тем фактам, которые часто, хотя и не представляют большого интереса сами по себе, могут непосредственно сопоставляться с предсказаниями парадигмальной теории. Как мы вскоре увидим, когда перейдем от экспериментальных к теоретическим проблемам нормальной науки, существует немного областей, в которых научная теория, особенно если она имеет преимущественно математическую форму, может быть непосредственно соотнесена с природой. Так, общая теория относительности Эйнштейна имеет не более чем три такие области. Более того, даже в тех областях, где применение теории возможно, часто требуется теоретическая аппроксимация, которая сильно ограничивает ожидаемое соответствие. Улучшение этого соответствия или поиски новых областей, в которых можно продемонстрировать полное соответствие, требует постоянного совершенствования мастерства и возбуждает фантазию экспериментатора и наблюдателя. Специальные телескопы для демонстрации предсказания Коперником годичного параллакса, машина Атвуда, изобретенная почти столетие спустя после выхода в свет «Начал» Ньютона и дающая впервые ясную демонстрацию второго закона Ньютона; прибор Фуко для доказательства того, что скорость света в воздухе больше, чем в воде; гигантский сцинтилляционный счетчик, созданный для доказательства существования нейтрино, — все эти примеры специальной аппаратуры и множество других подобных им иллюстрируют огромные усилия и изобретательность, направленные на то, чтобы ставить теорию и природу во все более тесное соответствие друг с другом. Эти попытки доказать такое соответствие составляют второй тип нормальной экспериментальной деятельности, и этот тип зависит от парадигмы даже более явно, чем первый. Существование парадигмы заведомо предполагает, что проблема разрешима. Часто парадигмальная теория прямо подразумевается в создании аппаратуры, позволяющей решить проблему. Например, без «Начал» измерения, которые позволяет произвести машина Атвуда, не значили бы ровно ничего.

Для исчерпывающего представления о деятельности по накоплению фактов в нормальной науке следует указать, как я думаю, еще на третий класс экспериментов и наблюдений. Он представляет эмпирическую работу, которая предпринимается для разработки парадигмальной теории в целях разрешения некоторых оставшихся неясностей и улучшения решения проблем, которые ранее были затронуты лишь поверхностно. Этот класс является наиболее важным из всех других, и описание его требует аналитического подхода. В более математизированных науках некоторые эксперименты, целью которых является разработка парадигмы, направлены на определение физических констант. Например, труд Ньютона указывал, что сила притяжения между двумя единичными массами при расстоянии между ними, равном единице, должна быть одинаковой для всех видов материи в любом месте пространства. Но собственные проблемы, поставленные в книге Ньютона, могли быть разрешены даже без подсчета величины этого притяжения, то есть универсальной гравитационной постоянной, и никто в течение целого столетия после выхода в свет «Начал» не изобрел прибора, с помощью которого можно было бы определить эту величину.

Знаменитый метод определения, предложенный в конце 90-х годов XVIII века Кавендишем, также не был совершенным. Поскольку гравитационная постоянная занимала центральное место в физической теории, многие выдающиеся экспериментаторы неоднократно направляли свои усилия на уточнение ее значения. В качестве других примеров работы в этом направлении можно упомянуть определения астрономических постоянных, числа Авогадро, коэффициента Джоуля, заряда электрона и т. д. Очень немногие из этих тщательно подготовленных попыток могли бы быть предприняты, и ни одна из них не принесла бы плодов без парадигмальной теории, которая сформулировала проблему и гарантировала существование определенного решения.

Усилия, направленные на разработку парадигмы, не ограничиваются, однако, определением универсальных констант. Они могут быть нацелены, например, на открытие количественных законов: закон Бойля, связывающий давление газа с его объемом, закон электрического притяжения Кулона и формула Джоуля, связывающая теплоту, излучаемую проводником, по которому течет ток, с силой тока и сопротивлением, — все они охватываются этой категорией. Может быть, тот факт, что парадигма является предпосылкой открытия подобного типа законов, не достаточно очевиден. Часто приходится слышать, что эти законы открываются посредством одних лишь измерений, предпринятых ради самих этих законов без всяких теоретических предписаний. Однако история никак не подтверждает применение такого чисто бэконовского метода. Эксперименты Бойля были бы немыслимы, пока воздух рассматривался как упругий флюид, к которому можно применять понятие гидростатики (а если бы их и можно было бы поставить, то они получили бы другую интерпретацию или не имели бы никакой интерпретации вообще). Успех Кулона зависел от создания им специального прибора для измерения силы, действующей на точечные заряды. (Те, кто до него измерял электрические силы, используя для этого обычные весы и т. д., не могли обнаружить постоянной зависимости или даже простой регулярности.) Но конструкция его прибора в свою очередь зависела от предварительного признания того, что каждая частичка электрического флюида воздействует на другую на расстоянии. Кулон искал именно такую силу взаимодействия между частицами, которую можно было бы легко представить как простую функцию от расстояния. Эксперименты Джоуля также можно использовать для иллюстрации того, как количественные законы возникают благодаря разработке парадигмы. Фактически между качественной парадигмой и количественным законом существует столь общая и тесная связь, что после Галилея такие законы часто верно угадывались с помощью парадигмы за много лет до того, как были созданы приборы для их экспериментального обнаружения.

Наконец, имеется третий вид эксперимента, который нацелен на разработку парадигмы. Этот вид эксперимента более всех других похож на исследование. Особенно он преобладает в те периоды, когда в большей степени рассматриваются качественные, нежели количественные аспекты природных закономерностей, притом в тех науках, которые интересуются в первую очередь качественными законами. Часто парадигма, развитая для одной категории явлений, ставится под сомнение при рассмотрении другой категории явлений, тесно связанной с первой. Тогда возникает необходимость в экспериментах для того, чтобы среди альтернативных способов применения парадигмы выбрать путь к новой области научных интересов. Например, тепловая теория использовалась в качестве парадигмы в изучении процессов нагревания и охлаждения при смешивании и при изменении состояния. Но теплота может излучаться и поглощаться и во многих других случаях — например, при химическом соединении, при трении, благодаря сжатию или поглощению газа, — и к каждому из этих явлений тепловую теорию можно приложить по-разному. Если бы вакуум, например, имел теплоемкость, то нагревание при сжатии можно было бы объяснить как результат смешивания газа с пустотой или изменением удельной теплоемкости газов при изменении давления. Кроме того, есть и многие другие возможности объяснения. Для тщательного исследования этих возможных способов и их дифференциации предпринималось множество экспериментов, причем все они исходили из парадигмального характера тепловой теории и использовали ее при разработке экспериментов и для интерпретации их результатов. Как только был установлен факт нагревания при увеличении давления, все последующие эксперименты в этой области были подчинены тем самым парадигме. Если само явление установлено, то как еще можно было объяснить выбор данного эксперимента?

Источник: Т. Кун. Структура научных революций. — М.: ACТ, 2003. — С. 52-57. В оформлении страницы используется изображение rosevillehistorical.org.

ЧТО ТАКОЕ БАЗА ЗНАНИЙ?

Концентрированная книга издательства LIVREZON складывается из сотен и тысяч проанализированных источников литературы и масс-медиа. Авторы скрупулёзно изучают книги, статьи, видео, интервью и делятся полезными материалами, формируя коллективную Базу знаний. 

Пример – это фактурная единица информации: небанальное воспроизводимое преобразование, которое используется в исследовании. Увы, найти его непросто. С 2017 года наш Клуб авторов собрал более 80 тысяч примеров. Часть из них мы ежедневно публикуем здесь. 

Каждый фрагмент Базы знаний относится к одной или нескольким категориям и обладает точной ссылкой на первоисточник. Продолжите читать материалы по теме или найдите книгу, чтобы изучить её самостоятельно.  

📎 База знаний издательства LIVREZON – только полезные материалы.

Следующая статья
Естественные науки
Микромир под прицелом: нобелевские методы исследования, когда объект изучения не виден
Исследователю нередко приходится изучать то, что не видно его глазу. Это могут быть отдельные молекулы (ДНК или любой белок), внутриклеточные структуры (ядро или органеллы) или микроорганизмы вроде бактерий или вирусов. В этой статье представлены Нобелевские открытия по физиологии и медицине, которые позволили исследователям преодолеть этот барьер и увидеть то, что раньше было скрыто. Представьте, что вы пытаетесь изучить нечто, чего не видите. Это может быть крошечная молекула, сложная внутриклеточная структура или даже целый микроорганизм. Как доказать ...
Естественные науки
Микромир под прицелом: нобелевские методы исследования, когда объект изучения не виден
Гуманитарные науки
Когда закон – это вера: религия как основа древнего города
Гуманитарные науки
Признаки психологической регрессии по Курту Левину
Гуманитарные науки
Принцип полезности по Иеремии Бентаму
Гуманитарные науки
Логика причин и следствий: восемь правил
Гуманитарные науки
Как рождаются научные революции по Томасу Куну
Гуманитарные науки
Вещи, власть и статус: как предметы управляют обществом
Гуманитарные науки
Бертран Рассел о том, как бороться с проституцией
Гуманитарные науки
Устройство Спарты: гражданином стать может (не) каждый
Гуманитарные науки
Две формы религиозного служения по Максу Веберу
Гуманитарные науки
Удовольствие заразно, или как на нас влияет чужое мнение
Гуманитарные науки
Бертран Рассел о том, кто такой цивилизованный человек
Гуманитарные науки
Фундаментальный конфликт благоразумия и страсти по Бертрану Расселу
Гуманитарные науки
Ложная самоуверенность может роковым образом ввести в заблуждение
Гуманитарные науки
Если факты не доказаны, а лишь принимаются за истинные
IT
Норберт Винер о том, какие науки являются наиболее перспективными